Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Public Health ; 10: 1089418, 2022.
Article in English | MEDLINE | ID: covidwho-2232742

ABSTRACT

Numerous investigations of the spatiotemporal patterns of infectious disease epidemics, their potential influences, and their driving mechanisms have greatly contributed to effective interventions in the recent years of increasing pandemic situations. However, systematic reviews of the spatiotemporal patterns of communicable diseases are rare. Using bibliometric analysis, combined with content analysis, this study aimed to summarize the number of publications and trends, the spectrum of infectious diseases, major research directions and data-methodological-theoretical characteristics, and academic communities in this field. Based on 851 relevant publications from the Web of Science core database, from January 1991 to September 2021, the study found that the increasing number of publications and the changes in the disease spectrum have been accompanied by serious outbreaks and pandemics over the past 30 years. Owing to the current pandemic of new, infectious diseases (e.g., COVID-19) and the ravages of old infectious diseases (e.g., dengue and influenza), illustrated by the disease spectrum, the number of publications in this field would continue to rise. Three logically rigorous research directions-the detection of spatiotemporal patterns, identification of potential influencing factors, and risk prediction and simulation-support the research paradigm framework in this field. The role of human mobility in the transmission of insect-borne infectious diseases (e.g., dengue) and scale effects must be extensively studied in the future. Developed countries, such as the USA and England, have stronger leadership in the field. Therefore, much more effort must be made by developing countries, such as China, to improve their contribution and role in international academic collaborations.


Subject(s)
COVID-19 , Communicable Diseases , Dengue , Humans , COVID-19/epidemiology , Communicable Diseases/epidemiology , Bibliometrics , Pandemics
2.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-2207787

ABSTRACT

Numerous investigations of the spatiotemporal patterns of infectious disease epidemics, their potential influences, and their driving mechanisms have greatly contributed to effective interventions in the recent years of increasing pandemic situations. However, systematic reviews of the spatiotemporal patterns of communicable diseases are rare. Using bibliometric analysis, combined with content analysis, this study aimed to summarize the number of publications and trends, the spectrum of infectious diseases, major research directions and data-methodological-theoretical characteristics, and academic communities in this field. Based on 851 relevant publications from the Web of Science core database, from January 1991 to September 2021, the study found that the increasing number of publications and the changes in the disease spectrum have been accompanied by serious outbreaks and pandemics over the past 30 years. Owing to the current pandemic of new, infectious diseases (e.g., COVID-19) and the ravages of old infectious diseases (e.g., dengue and influenza), illustrated by the disease spectrum, the number of publications in this field would continue to rise. Three logically rigorous research directions—the detection of spatiotemporal patterns, identification of potential influencing factors, and risk prediction and simulation—support the research paradigm framework in this field. The role of human mobility in the transmission of insect-borne infectious diseases (e.g., dengue) and scale effects must be extensively studied in the future. Developed countries, such as the USA and England, have stronger leadership in the field. Therefore, much more effort must be made by developing countries, such as China, to improve their contribution and role in international academic collaborations.

4.
Infect Dis Poverty ; 11(1): 44, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1793809

ABSTRACT

BACKGROUND: A remarkable drop in tuberculosis (TB) incidence has been achieved in China, although in 2019 it was still considered the second most communicable disease. However, TB's spatial features and risk factors in urban areas remain poorly understood. This study aims to identify the spatial differentiations and potential influencing factors of TB in highly urbanized regions on a fine scale. METHODS: This study included 18 socioeconomic and environmental variables in the four central districts of Guangzhou, China. TB case data obtained from the Guangzhou Institute of Tuberculosis Control and Prevention. Before using Pearson correlation and a geographical detector (GD) to identify potential influencing factors, we conducted a global spatial autocorrelation analysis to select an appropriate spatial scales. RESULTS: Owing to its strong spatial autocorrelation (Moran's I = 0.33, Z = 4.71), the 2 km × 2 km grid was selected as the spatial scale. At this level, TB incidence was closely associated with most socioeconomic variables (0.31 < r < 0.76, P < 0.01). Of five environmental factors, only the concentration of fine particulate matter displayed significant correlation (r = 0.21, P < 0.05). Similarly, in terms of q values derived from the GD, socioeconomic variables had stronger explanatory abilities (0.08 < q < 0.57) for the spatial differentiation of the 2017 incidence of TB than environmental variables (0.06 < q < 0.27). Moreover, a much larger proportion (0.16 < q < 0.89) of the spatial differentiation was interpreted by pairwise interactions, especially those (0.60 < q < 0.89) related to the 2016 incidence of TB, officially appointed medical institutions, bus stops, and road density. CONCLUSIONS: The spatial heterogeneity of the 2017 incidence of TB in the study area was considerably influenced by several socioeconomic and environmental factors and their pairwise interactions on a fine scale. We suggest that more attention should be paid to the units with pairwise interacting factors in Guangzhou. Our study provides helpful clues for local authorities implementing more effective intervention measures to reduce TB incidence in China's municipal areas, which are featured by both a high degree of urbanization and a high incidence of TB.


Subject(s)
Epidemics , Tuberculosis , China/epidemiology , Geography , Humans , Incidence , Spatial Analysis , Tuberculosis/epidemiology
5.
Sci Total Environ ; 729: 138995, 2020 Aug 10.
Article in English | MEDLINE | ID: covidwho-153789

ABSTRACT

Recently, the coronavirus disease 2019 (COVID-19) has become a worldwide public health threat. Early and quick identification of the potential risk zones of COVID-19 infection is increasingly vital for the megacities implementing targeted infection prevention and control measures. In this study, the communities with confirmed cases during January 21-February 27 were collected and considered as the specific epidemic data for Beijing, Guangzhou, and Shenzhen. We evaluated the spatiotemporal variations of the epidemics before utilizing the ecological niche models (ENM) to assemble the epidemic data and nine socioeconomic variables for identifying the potential risk zones of this infection in these megacities. Three megacities were differentiated by the spatial patterns and quantities of infected communities, average cases per community, the percentages of imported cases, as well as the potential risks, although their COVID-19 infection situations have been preliminarily contained to date. With higher risks that were predominated by various influencing factors in each megacity, the potential risk zones coverd about 75% to 100% of currently infected communities. Our results demonstrate that the ENM method was capable of being employed as an early forecasting tool for identifying the potential COVID-19 infection risk zones on a fine scale. We suggest that local hygienic authorities should keep their eyes on the epidemic in each megacity for sufficiently implementing and adjusting their interventions in the zones with more residents or probably crowded places. This study would provide useful clues for relevant hygienic departments making quick responses to increasingly severe epidemics in similar megacities in the world.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , COVID-19 , China , Cities , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL